Toggle navigation
شرح واسئلة
مقالات
الرئيسية
ادخل شئ للبحث عنه
طريقة تنظيف الستائر بدون فك
كيفية التعامل مع الاطفال المصابين بصعوبات التعلم
مراجعة شاملة بالصور حول بورش كايين كوبيه 2020
ماسك السكر والجلسرين للبشرة المسمرة
عرض شانجان CS5 2019 من وكالة المجدوعي للسيارات
فوائد المحلب لتطويل الشعر
معلومات تفصيلية عن متلازمة داون
فتح بلاد السند (باكستان) والنهاية المأساوية التى واجهها البطل مُحمد بن القاسم
اقرأ ايضا
بحث عن الرهاب الإجتماعي
تعليم
التاريخ: 11/6/2019
بحث عن التطرف
تعليم
التاريخ: 16/6/2019
بحث عن المذكرات الادبية
تعليم
التاريخ: 22/5/2019
بحث عن القانون العام والمميز
تعليم
التاريخ: 28/5/2019
بحث عن الرهاب الإجتماعي
تعليم
التاريخ: 11/6/2019
اخفاء سجل المكالمات والرسائل بدون حذفها على الاندرويد
تعليم
التاريخ: 20/4/2015
فوائد الحاسوب في التعليم
تعليم
التاريخ: 9/6/2019
فوائد الزنجبيل للرئة
صحة
التاريخ: 25/3/2018
حقيقة قصة فيلم ” القداس الأسود ” ” Black Mass “
ادب
التاريخ: 3/9/2018
المكسرات وعسل النحل لعلاج مشاكل الغدة الدرقية
صحة
التاريخ: 2/11/2018
بحث جاهز عن البرهان الجبري
تعليم
بحوث للطلاب
19/5/2019
البرهان هو جوهر كل الأشياء التي تراها في الرياضيات ، أي أن كل الأشياء التي تستخدمها و تأخذها كأمر مسلم به ، مثل نظرية فيثاغورس ، و يتم إثبات البرهان في مرحلة ما على مدى آلاف السنين .
نبذة عن الجبر وتاريخه
– الجبر هو فرع من فروع الرياضيات يتعامل مع الرموز و قواعد التلاعب بتلك الرموز ، في الجبر الأولي ، تمثل هذه الرموز (تُكتب اليوم باسم الحروف اللاتينية واليونانية) كميات بدون قيم ثابتة ، تُعرف باسم المتغيرات ، تماماً كما تصف الجمل العلاقات بين كلمات معينة ، في الجبر ، تصف المعادلات العلاقات بين المتغيرات . – كان عمل فرانسوا فييت بشأن الجبر الجديد في نهاية القرن السادس عشر خطوة مهمة نحو الجبر الحديث ، و في عام 1637 ، نشر رينيه ديكارت كتاب La Géométrie ، واخترع الهندسة التحليلية وأدخل الرموز الجبرية الحديثة ، حدث رئيسي آخر في تطوير الجبر كان هو الحل الجبري العام للمعادلات المكعبة و الرباعية ، التي تم تطويرها في منتصف القرن السادس عشر . – تم تطوير فكرة المحدد بواسطة عالم الرياضيات الياباني سيكي كوا في القرن السابع عشر ، ثم تبعها غوتفريد لايبنيز بشكل مستقل بعد عشر سنوات ، لغرض حل أنظمة المعادلات الخطية المتزامنة باستخدام المصفوفات ، و قام غابرييل كرامر أيضًا ببعض الأعمال في المصفوفات والمحددات في القرن الثامن عشر ، و قام جوزيف لويس لاغرانج بدراسة التباديل في كتابه Réflexions sur la résolution algébrique des équations الذي وضعه عام 1770 و المكرس لحلول المعادلات الجبرية ، و كان باولو روفيني أول شخص قام بتطوير نظرية مجموعات التقليب ، و مثل سابقيه ، أيضًا في سياق حل المعادلات الجبرية .
نبذة عن البرهان الجبري
– فكرة البرهان هي الإدلاء ببيان عام – على سبيل المثال ، لا تريد فقط أن تقول أن الزوايا في بعض المثلثات تزيد عن 180 ، و تريد أن تقول أن الزوايا في جميع المثلثات تزيد عن 180 ، و البرهان هو دليل على أنه يجب عليك معرفته بالفعل ، و البرهان هو الهيكل العام للإثبات هو البدء ببيان واحد ، و اتخاذ سلسلة من الخطوات المنطقية و الرياضية ، و ينتهي به المطاف في الاستنتاج المرغوب ، بالطبع ، ليس كل ما نريد يمكن إثباته صحيح .
أمثلة على البرهان الجبري
المثال الأول
– يزعم هيرنان أنه ” إذا قمت بتعداد رقم و قمت بإضافة 1 ، فستكون النتيجة عددًا أوليًا ” ، و لاثبات ذلك سنبدأ بالأرقام الأصغر : 1 ^ 2 + 1 = 1 + 1 = 2 ، الذي يكون أولي .
2 + 1 = 1 + 1 = 2 ، و هو أولي .
2 ^ 2 + 1 = 4 + 1 = 5 ، الذي يكون أولي .
2 + 1 = 4 + 1 = 5 ، وهو أولي . – الآن ، في هذه المرحلة ، قد يبدو أن بيانها صحيح ، لكن إذا جربنا الرقم المربع التالي : 3 ^ 2 + 1 = 9 + 1 = 10 ، و هو ليس أولي .
2 + 1 = 9 + 1 = 10 ، و هي ليست أولية . – هذا مثال مضاد لبيانها ، لذلك أثبتنا أنه خطأ .
المثال الثاني
– أثبت أن n + 2) ^ 2- (n-2) ^ 2 (n + 2)2 – (ن 2) 2 قابل للقسمة على 8 لأي عدد صحيح موجب nn .
– للقيام بذلك ، نحتاج إلى إظهار أن n + 2) ^ 2- (n-2) ^ 2 (n + 2)2 – (ن 2) 2 يمكن كتابتها بطريقة قابلة للقسمة بوضوح على 8 ، لإيجاد طريقة لكتابة تعبير كهذا بطريقة مختلفة ، يمكننا محاولة توسيعه ، لذلك ، تتوسع الشريحة الأولى إلى (ن + 2) ^ 2 = ن ^ 2 + 2N + 2N + 4 = ن ^ 2 + 4N + 4 (ن + 2) 2 = ن 2 + 2N + 2N + 4 = ن 2 + 4N + 4 ، ثم ، يتوسع القوس الثاني إلى (ن 2) ^ 2 = ن ^ 2-2n-2N + 4 = ن ^ 2-4n + 4 (ن 2) 2 = ن 2 -2n-2N + 4 = ن 2 -4n + 4 . – يحتوي التعبير في السؤال على الشريحة الثانية التي يتم طرحها من الأولى ، لذلك ، سنفعل هذا الطرح مع التوسع بين قوسين : (ن + 2) ^ 2- (ن 2) ^ 2 = (ن ^ 2 + 4N + 4) – (ن ^ 2-4n + 4) (ن + 2) 2 – (ن 2) 2 = (ن 2 + 4N + 4) – (ن 2 -4n + 4) يمكننا أن نرى أن ن ^ 2n2 سيتم إلغاء البنود ، و كذلك 4s . – لذلك كل ما تبقى لدينا هو (ن ^ 2 + 4N + 4) – (ن ^ 2-4n + 4) = 4N – (- 4N) = 8N (ن 2 + 4N + 4) – (ن 2 -4n + 4) = 4N – (- 4N) = 8N ، لذا ، فإن التعبير بأكمله يبسط إلى 8n8n. الآن ، إذا كان nn عددًا صحيحًا ، فيجب أن تكون 8n8n قابلة للقسمة على 8 (إذا قسمناها على 8 ، نحصل على الإجابة nn). بما أن 8n8n مكافئ للتعبير الذي بدأناه ، يجب أن تكون الحالة (n + 2) ^ 2- (n-2) ^ 2 (n + 2)
2 – (ن 2) 2 ، قابل للقسمة على 8 لأي عدد صحيح موجب nn – و بالتالي فإن العبارة أصبحت عالمية ، و بالتالي ، لقد أكملنا الدليل .
أنواع البراهين الرياضية
البرهان الجبري
و هو الذي يختص بحل المعادلات و المتباينات .
البرهان الهندسي
يختص بالمستقيمات و القطع المستقيمة و التوازي و الزوايا .
البرهان الإحداثي
يختص بالمستوى و قوانين الهندسة التحليلية .
اقرأ ايضا
الحشرة المعجزة حشرة الدروسوفيلا (ذبابة الفاكهة)
افضل 10 سيارات فورد في تاريخها
معركة اليرموك.. انهاء الوجود الرومي في الشام
فيروس يهز الاقتصاد الصيني مما يفرض إعادة التفكير في كل شيء تقريبًا
اسماء ألعاب مثل Roblox
اذكار الصباح كاملة
بيجو 208 2020 الجيل الجديد و الفروق عن الموديل السابق
حقيقة تأثير فيتامين د على كسور العظام
يمكن أن يساعد فاموتيدين في علاج فيروس كورونا
مهارة التحدث أمام الجمهور والناس
X
2023 learnfreelabs.com™.